半正多面体

以下の条件を満たす多面体
  • 名称:立方八面体
  • 面の数→正三角形8枚/正方形6枚
  • 辺の数→24
  • 頂点の数→12
  • シュレーフリ記号→r{4,3}
  • 頂点形状→(3,4)^2

立方八面体

正六面体または正八面体の各頂点を辺の中心まで切り落とした立体。

萌えポイント

ついに来ました!!立方シリーズ!!

この立方八面体は正四面体を膨張させた形をしています、うん、かわいい。よくわからんって人は調べてください、うぃきぽん(Wikipedia)に載ってます。

  • 名称:二十・十二面体
  • 面の数→正三角形20枚/正五角形12枚
  • 辺の数→60
  • 頂点の数→30
  • シュレーフリ記号→r{5,3}
  • 頂点形状→(3,5)^2

二十・十二面体

正十二面体または正二十面体の各頂点を辺の中心まで切り落とした立体。

萌えポイント

さぁて!来ました二十・十二面体!!!!

みんな大好き二十・十二面体!!!

スマートフォンやらで「に」と打ったら「二十・十二面体」と出てくる人もいるんじゃないですか?!

ちなみに、このウェブを作ったメンバーが所属している部活、理工学部の部長の嫁であったりする。

レオナルド・ダ・ヴィンチが最初に描いた多面体だけあって、この愛らしい見た目には誰もが惹き付けられるものがあるのだと思う。いわゆる多面体界のアイドル。ぐうかわ!!

  • 名称:切頂四面体
  • 面の数→正三角形4枚/正六角形4枚
  • 辺の数→18
  • 頂点の数→12
  • シュレーフリ記号→t{3,3}
  • 頂点形状→3,6^2

切頂四面体

正四面体の各頂点を切り落とした立体。

萌えポイント

なんとも言えない形してるよね笑

正三角形4枚とと正六角形4枚、正六角形が無駄にでかく見える上に正三角形も小さく見えるのでほんとになんとも言えません、、!

  • 名称:切頂六面体
  • 面の数→正三角形8枚/正八角形6枚
  • 辺の数→36
  • 頂点の数→24
  • シュレーフリ記号→t{4,3}
  • 頂点形状→3,8^2

切頂六面体

正六面体の各頂点を切り落とした立体。

萌えポイント

これを見てると角が丸くなったなあ、というような感じで成長する我が子を見守るような気持ちになります笑

見る角度によってはポケ〇ンのオニゴーリにに見えるのがミソ。

  • 名称:切頂八面体
  • 面の数→正方形6枚/正六角形8枚
  • 辺の数→36
  • 頂点の数→24
  • シュレーフリ記号→t{3,4}
  • 頂点形状→4,6^2

切頂八面体

正八面体の各頂点を切り落とした立体。

萌えポイント

この切頂八面体ちゃんはなんと平行多面体であるため、この子だけで空間充填ができちゃう!!

平行多面体、というのは1つの図形の平行移動だけで空間充填できちゃう図形のことなのですが、純粋なものは立方体、六角柱、切頂八面体、菱形十二面体、長菱形十二面体の5種類しかないんです!レアレアや、かわええ。

  • 名称:切頂十二面体
  • 面の数→正三角形20枚/正十角形12枚
  • 辺の数→90
  • 頂点の数→60
  • シュレーフリ記号→t{5,3}
  • 頂点形状→3,10^2

切頂十二面体

正十二面体各頂点を切り落とした立体。

萌えポイント

正十角形とかでできちゃったよ、もうかなり丸っぽい見た目だよね、正十角形とか笑

しかし、正十角形の周りに正三角形が5個ついてるような見た目は、ポ〇モンのメテノみたいでめっちゃかわいい!!

  • 名称:切頂二十面体
  • 面の数→正五角形12枚/正六角形20枚
  • 辺の数→90
  • 頂点の数→60
  • シュレーフリ記号→t{5,3}
  • 頂点形状→5,6^2

切頂十二面体

正二十面体の各頂点を切り落とした立体。

萌えポイント

正五角形と正六角形が多いとかなり面数が多いように感じますね!!

よく皆さんも蹴って蹴りまくって遊んでいるであろうサッカーボールは、この立体に空気を入れて、球に近ずけたものなんです!!

切頂とか難しそうな名前しといて意外と身近にいるんだよ多面体!!どうです?気にしてみる気になったんじゃないですか??!

  • 名称:斜方立方八面体
  • 面の数→正三角形8枚/正方形18枚
  • 辺の数→48
  • 頂点の数→24
  • シュレーフリ記号→rr{4,3}/rrr{3,3}
  • 頂点形状→3,4^3

斜方立方八面体

正六面体または正八面体の辺を削ったような立体。

萌えポイント

マ〇オギャラクシーで出てきそうな見た目をしているこの斜方立方八面体、名前がややこしくなってきて早口言葉みたいになってきている。

こいつもまた立方八面体と同じような感じで正六面体または正八面体を膨張させたらできる立体だったりする。

  • 名称:斜方二十・十二面体
  • 面の数→正三角形20枚/正方形30枚/正五角形12枚
  • 辺の数→120
  • 頂点の数→60
  • シュレーフリ記号→rr{5,3}/rsr{3,3}
  • 頂点形状→3,4,5,4

斜方二十・十二面体

正十二面体または正二十面体の辺を削ったような立体。

萌えポイント

こいつも正十二面体または正二十面体を膨張させた形をしている。広がっていく姿が実に可愛い。

だんだんこの多面体紹介を書いている人間のテンションが下がってきていると感じているあなた、ネタがなくなった訳とかそういうことじゃないから!!あるから...

  • 名称:斜方切頂立方八面体
  • 面の数→正方形12枚/正六角形8枚/正八角形6枚
  • 辺の数→72
  • 頂点の数→48
  • シュレーフリ記号→tr{4,3}
  • 頂点形状→4,6,8

斜方切頂立方八面体

立方八面体の各頂点を切り落としたような立体。(正確ではない)

萌えポイント

斜方切頂立方とかもう3つもくっつけてよくわかんなくなってきたヨ。漢字だけでも9文字かせげるので作文に最適!!謎に長い名前は、排他的経済水域や禁中並公家諸法度を思い出させる。絶対にアナログでは書きたくない。

この斜方切頂立方八面体はゾーン多面体と言って、向かい合った辺同士が全て平行になっている多角形のみで構成されているちょいレアな立体なのです!

  • 名称:斜方切頂二十・十二面体
  • 面の数→正方形30枚/正六角形20枚/正十角形12枚
  • 辺の数→180
  • 頂点の数→120
  • シュレーフリ記号→tr{5,3}
  • 頂点形状→4,6,10

斜方切頂二十・十二面体

二十・十二面体の各頂点を切り落としたような立体。(正確ではない)

萌えポイント

ここまでくると面数が多くてきm...

いやだって、辺の数180本よ? まあここまでくるとだいぶコアな世界ってことですかね。

面数多いと持ちやすいのは利点。展開図はかなりえぐいので見たい方はウェブで!

  • 名称:変形立方体(左)
  • 面の数→正三角形38枚/正方形6枚
  • 辺の数→60
  • 頂点の数→24
  • シュレーフリ記号→sr{4,3}
  • 頂点形状→3^4,4

変形立方体(左)

正六面体の面をねじり、間に正三角形を入れたような立体。

萌えポイント

ここにきてシンプルな多面体。この紹介文を書くことで初めて見た立体だっったが、見れば見るほど推せる。何せねじっているので、シンプルなのに複雑な形状、見てて飽きない!!今後推しになりそうです。

※鏡像あり

  • 名称:変形立方体(右)
  • 面の数→正三角形38枚/正方形6枚
  • 辺の数→60
  • 頂点の数→24
  • シュレーフリ記号→sr{4,3}
  • 頂点形状→3^4,4

変形立方体(右)

正六面体の面をねじり、間に正三角形を入れたような立体。

萌えポイント

ここにきてシンプルな多面体。この紹介文を書くことで初めて見た立体だっったが、見れば見るほど推せる。何せねじっているので、シンプルなのに複雑な形状、見てて飽きない!!今後推しになりそうです。

※鏡像あり

  • 名称:変形十二面体(左)
  • 面の数→正三角形80枚/正五角形12枚
  • 辺の数→150
  • 頂点の数→60
  • シュレーフリ記号→sr{5,3}
  • 頂点形状→3^4,5

変形十二面体(左)

正十二面体の面をねじり、間に正三角形を入れたような立体。

萌えポイント

正五角形を正三角形が囲んでるような重厚さがあって格好いい!!

変形多面体の特徴として三角形が多く、複雑なようでシンプル、面が多い多面体が好きな人にオススメしたい。

※鏡像あり

  • 名称:変形十二面体(右)
  • 面の数→正三角形80枚/正五角形12枚
  • 辺の数→150
  • 頂点の数→60
  • シュレーフリ記号→sr{5,3}
  • 頂点形状→3^4,5

変形十二面体(右)

正十二面体の面をねじり、間に正三角形を入れたような立体。

萌えポイント

正五角形を正三角形が囲んでるような重厚さがあって格好いい!!

変形多面体の特徴として三角形が多く、複雑なようでシンプル、面が多い多面体が好きな人にオススメしたい。

※鏡像あり